Optimal Estimation of Co-heritability in High-dimensional Linear Models

نویسندگان

  • Zijian Guo
  • Wanjie Wang
  • T. Tony Cai
  • Hongzhe Li
چکیده

Co-heritability is an important concept that characterizes the genetic associations within pairs of quantitative traits. There has been significant recent interest in estimating the co-heritability based on data from the genome-wide association studies (GWAS). This paper introduces two measures of co-heritability in the highdimensional linear model framework, including the inner product of the two regression vectors and a normalized inner product by their lengths. Functional de-biased estimators (FDEs) are developed to estimate these two co-heritability measures. In addition, estimators of quadratic functionals of the regression vectors are proposed. Both theoretical and numerical properties of the estimators are investigated. In particular, minimax rates of convergence are established and the proposed estimators of the inner product, the quadratic functionals and the normalized inner product are shown to be rate-optimal. Simulation results show that the FDEs significantly outperform the naive plug-in estimates. The FDEs are also applied to analyze a yeast segregant data set with multiple traits to estimate heritability and co-heritability among the traits. Zijian Guo is a Ph.D. student (Email: [email protected]). Wanjie Wang is a Postdoctoral Research Fellow (Email: [email protected]). T. Tony Cai is Dorothy Silberberg Professor of Statistics (E-mail: [email protected]). The research of T. Tony Cai was supported in part by NSF Grants DMS-1208982 and DMS-1403708, and NIH Grant R01 CA127334. Hongzhe Li is Professor (E-mail: [email protected]). The research of Wanjie Wang and Hongzhe Li was supported in part by NIH grants CA127334 and GM097505.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models

The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...

متن کامل

Estimation of genetic parameters for body weight traits in Baluchi sheep

Genetic parameters for birth weight (BW), weaning weight (WW), 6 months weight (6MW), 9 months weight (9MW) and yearling weight (YW) in Baluchi sheep were estimated using data collected during a 26-year period (1984-2010). Estimates of (co)variance components were obtained by REML procedures by fitting a linear mixed animal model. Significant random effects for each trait were explored by fitti...

متن کامل

Comparison of Linear and Threshold Models for Estimation Genetic and Phenotypic Parameters of Success of Conception at First Service and Inseminations to Conception in Holstein Cattles in East Azarbayjan Province

In this research genetic and phenotypic parameters were estimated using linear and threshold models, for reproductive traits, data from 6 large industrial dairy herd of East Azerbaijan province collected by Agriculture Jihad Organization during 10 years (2001-2010). Best linear unbiased predictions of traits breeding values were estimated using Restricted Maximum Likelihood method by WOMBAT sof...

متن کامل

Comparison of Linear and Threshold Models for Estimation Genetic and Phenotypic Parameters of Success of Conception at First Service and Inseminations to Conception in Holstein Cattles in East Azarbayjan Province

In this research genetic and phenotypic parameters were estimated using linear and threshold models, for reproductive traits, data from 6 large industrial dairy herd of East Azerbaijan province collected by Agriculture Jihad Organization during 10 years (2001-2010). Best linear unbiased predictions of traits breeding values were estimated using Restricted Maximum Likelihood method by WOMBAT sof...

متن کامل

Optimal Estimation of Genetic Relatedness in High-dimensional Linear Models

Estimating the genetic relatedness between two traits based on the genome-wide association data is an important problem in genetics research. In the framework of high-dimensional linear models, we introduce two measures of genetic relatedness and develop optimal estimators for them. One is genetic covariance, which is defined to be the inner product of the two regression vectors, and another is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016